Cho tam giác ABC có AB=6cm,AC=8cm,BC=10cm. a, tam giác ABC vuông tại A vì sao? b,Tính góc C,B

Cho tam giác ABC có AB=6cm,AC=8cm,BC=10cm.
a, tam giác ABC vuông tại A vì sao?
b,Tính góc C,B

2 bình luận về “Cho tam giác ABC có AB=6cm,AC=8cm,BC=10cm. a, tam giác ABC vuông tại A vì sao? b,Tính góc C,B”

  1. $\text{a/ Áp dụng định lí Py-ta-go đảo: }$
    $\text{AB² + AC² = BC² = 6² +  8² = 10² }$
    $\text{⇒ ΔABC vuông tại A.}$
    $\text{b/ Góc B là:}$
    $\text{sin$\widehat{B}$ = AC/BC = 8/10 = 0,8 }$
    $\text{⇔ $\widehat{B}$ = $sin^{-1}$(0,8) ≈ $53^{o}$ }$
    $\text{· Góc C là:}$
    $\text{ $\widehat{C}$ = 180 – 90 – $\widehat{B}$ ≈ 180 – 90 – 53 ≈ $37^{o}$ }$

    _________________________________________
    $\text{CHÚC BẠN HỌC TỐT NHÉ! TE AMOOO :b}$
    $\text{#MuñozSerrano}$

    Trả lời
  2. Giải đáp + Lời giải và giải thích chi tiết:
    a. Ta có : AB^2 + AC^2 = 6^2 + 8^2 = 100 $^{(1)}$
    BC^2 = 10^2 = 100 $^{(2)}$
    Từ $^{(1)}$ và $^{(2)}$ : AB^2 + AC^2 = BC^2
    Suy ra $\triangle ABC$ là Tam giác vuông ở A  (Pytago đảo)
    b. Xét $\triangle ABC$ vuông ở A có : 
    +) sin hat{B} = (AC)/(BC) = 8/10 = 0,8
    ⇔ hat{B} = sin^{-1} ( 0,8) ≈ 53^o
    +) hat{C} = 90^o – hat{B} ≈ 90^o – 53^o ≈ 37^o.

    Trả lời

Viết một bình luận

Câu hỏi mới