Cho tứ giác ABCD có hai đỉnh B và C ở trên nửa đường tròn đường kính AD, tâm O. Hai đường chéo AC và BD cắt nhau tại E. Gọi H

Cho tứ giác ABCD có hai đỉnh B và C ở trên nửa đường tròn đường kính AD, tâm O. Hai đường chéo AC và BD cắt nhau tại E. Gọi H là hình chiếu vuông góc của E xuống AD và I là trung điểm của DE. Chứng minh rằng:
1) Các tứ giác ABEH, DCEH nội tiếp được đường tròn.
2) E là tâm đường tròn nội tiếp tam giác BCH.
2) Năm điểm B, C, I, O, H cùng thuộc một đường tròn.
Có cả hình nha :33

2 bình luận về “Cho tứ giác ABCD có hai đỉnh B và C ở trên nửa đường tròn đường kính AD, tâm O. Hai đường chéo AC và BD cắt nhau tại E. Gọi H”

Viết một bình luận

Câu hỏi mới