gbt bằng cách lập hệ phương trình Một sân trường hình chữ nhật có nửa chu vi 230m. Hai lần chiều dài lớn hơn ba lần chiều rộn

gbt bằng cách lập hệ phương trình
Một sân trường hình chữ nhật có nửa chu vi 230m. Hai lần chiều dài lớn hơn ba lần chiều rộng là 50m. Tính chiều dài và chiều rộng sân trường.

2 bình luận về “gbt bằng cách lập hệ phương trình Một sân trường hình chữ nhật có nửa chu vi 230m. Hai lần chiều dài lớn hơn ba lần chiều rộn”

  1. Giải đáp :

    Gọi chiều dài của sân trường hình chữ nhật là : x(m) ĐK : x > 0
    Gọi chiều rộng của sân trường hình chữ nhật là : y(m) ĐK : y > 0

    sân trường hình chữ nhật có nửa chu vi 230m :
                  x + y = 230     (1)
    Hai lần chiều dài lớn hơn ba lần chiều rộng là 50m :
                2x – 3y = 50       (2)
    từ (1) và (2) ta có hệ PT :
    $\begin{cases} x + y = 230\\2x – 3y = 50\end{cases}$
    Giải hệ PT ta được :
    $\begin{cases} x = 148(TM)\\y = 82(TM)\end{cases}$
    Vậy :
    chiều dài của sân trường hình chữ nhật là : 148m
    chiều rộng của sân trường hình chữ nhật là : 82m
    $#best$

    Trả lời
  2. Lời giải chi tiết:
    Gọi x(m) là chiều dài sân trường, y(m) là chiều rộng sân trường (x,y >0)
    Do nửa chu vi là 230m nên ta có: x+y=230
    2 lần chiều dài lớn hơn 3 lần chiều rộng là 50m: 2x-3y=50
    Theo bài ra ta có hệ phương trình:
    {(x+y=230),(2x-3y=50):}
    <=> {(3x+3y=690),(2x-3y=50):}
    <=> {(5x=740),(2x-3y=50):}
    <=> {(x=148(tm)),(2.148-3y=50):}
    <=> {(x=148(tm)),(296-3y=50):}
    <=> {(x=148(tm)),(3y=246):}
    <=> {(x=148(tm)),(y=82(tm)):}
    Vậy chiều dài sân trường là: 148m, chiều rộng là 82m.
    color[blue]text[@BadMood]
    $#FanOfGD$

    Trả lời

Viết một bình luận

Câu hỏi mới