{(x^2+y^2-xy=7),(x+y+2xy=10):} <=>{((x+y)^2-2xy-xy=7),(x+y+2xy=10):} <=>{((x+y)^2-3xy=7),(x+y+2xy=10):} Đặt {(a=x+y),(b=xy):}(a^2>=4b) ta có hệ: {(a^2-3b=7),(a+2b=10):} <=>{(a^2-3b=7),(a=10-2b):} Thay a=10-2b vào a^2-3b=7 (10-2b)^2-3b=7 <=>100-40b+4b^2-3b=7 <=>4b^2-43b+93=0 <=>[(b=31/4->a=-11/2),(b=3->a=4):} Với a=-11/2;b=31/4->a^2-4b=-3/4<0(L) ->a=4;b=3 <=>{(x+y=4),(xy=3):} <=>{(x=4-y),((4-y).y=3):} <=>{(x=4-y),([(y=3),(y=1):}):} <=>{([(x=4-3=1),(x=4-1=3):}),([(y=3),(y=1):}):} Vậy (x;y)=(1;3),(3;1)
Vậy (x;y)\in{(1;3),(3;1)}
<=>{((x+y)^2-2xy-xy=7),(x+y+2xy=10):}
<=>{((x+y)^2-3xy=7),(x+y+2xy=10):}
Đặt {(a=x+y),(b=xy):}(a^2>=4b) ta có hệ:
{(a^2-3b=7),(a+2b=10):}
<=>{(a^2-3b=7),(a=10-2b):}
Thay a=10-2b vào a^2-3b=7
(10-2b)^2-3b=7
<=>100-40b+4b^2-3b=7
<=>4b^2-43b+93=0
<=>[(b=31/4->a=-11/2),(b=3->a=4):}
Với a=-11/2;b=31/4->a^2-4b=-3/4<0(L)
->a=4;b=3
<=>{(x+y=4),(xy=3):}
<=>{(x=4-y),((4-y).y=3):}
<=>{(x=4-y),([(y=3),(y=1):}):}
<=>{([(x=4-3=1),(x=4-1=3):}),([(y=3),(y=1):}):}
Vậy (x;y)=(1;3),(3;1)