Trang chủ » Hỏi đáp » Môn Toán Giải PT `(36+12m+m^2)/(3-m)^2=(-m^2+2m+12)/(3-m)` 12/05/2023 Giải PT `(36+12m+m^2)/(3-m)^2=(-m^2+2m+12)/(3-m)`
( 36 + 12m + m^2 )/( ( 3- m)^2 ) = ( -m^2 + 2m + 12 )/( 3 – m ) ( ĐK : m ne 3 ) <=> ( 36 + 12m + m^2 )( 3 – m ) = ( 3 – m )^2 ( -m^2 +2m + 12 ) <=> -m^3 – 9m^2 + 108 = -m^4 + 8m^3 – 9m^2 – 54m + 108 <=> ( – m^3 – 8m^3 ) + ( 9m^2 – 9m^2 ) + 54m + m^4 + ( 108 – 108 ) = 0 <=> -9m^3 + 54m + m^4 =0 <=> m ( m^3 – 9m^2 + 54 ) = 0 <=> m ( m – 3 ) ( m^2 – 6m – 18 ) = 0 <=> m ( m – 3 ) [ ( m^2 – 6m – 9 ) – 27 ] = 0 <=> m ( m – 3 ) [ ( m – 3 )^2 – 27] = 0 <=> \(\left[ \begin{array}{l}m = 0\\m-3=0 \\ ( m – 3 )^2 – 27 = 0\end{array} \right.\) <=> \(\left[ \begin{array}{l}m=0(t/m)\\m=3(loại)\\m-3=\pm \sqrt{27}(t/m)\end{array} \right.\) <=> \(\left[ \begin{array}{l}m=0(t/m)\\m=\pm 3\sqrt{3} + 3(t/m)\end{array} \right.\) Vậy S = { 0 ; 3sqrt{3} + 3 ; -3\sqrt{3} + 3 } Trả lời
Giải đáp: S= {0; 3\sqrt{3}+3; -3\sqrt{3}+3} Lời giải và giải thích chi tiết: Điều kiện xác định: 3-m \ne 0 <=> m \ne 3 (36+12m+m^2)/(3-m)^2 = (-m^2+2m+12)/(3-m) <=> (3-m)/((3-m)^2) = (-m^2+2m+12)/(36+12m+m^2) <=> 1/(3-m) = (-m^2+2m+12)/(36+12m+m^2) <=> 36+12m+m^2 = (3-m)(-m^2+2m+12) <=> m^2+12m+36 = -3m^2+6m+36+m^3-2m^2-12m <=> m^2+12m+36 = m^3-5m^2-6m+36 <=> -m^3+6m^2+18m = 0 <=> m^3-6m^2-18m = 0 <=> m(m^2-6m-18) = 0 <=> m[(m^2-6m+9)-27] = 0 <=> m[(m-3)^2-27] = 0 <=> \(\left[ \begin{array}{l}m=0\\(m-3)^2-27=0\end{array} \right.\) <=> \(\left[ \begin{array}{l}m=0\\(m-3)^2=27\end{array} \right.\) <=> \(\left[ \begin{array}{l}m=0\\m-3=\sqrt{27}\\m-3=-\sqrt{27}\end{array} \right.\) <=> \(\left[ \begin{array}{l}m=0\\m = 3\sqrt{3}+3\\m = -3\sqrt{3}+3\end{array} \right.\) ( Thỏa mãn ) Vậy S= {0; 3\sqrt{3}+3; -3\sqrt{3}+3} Trả lời
<=> \(\left[ \begin{array}{l}m=0\\(m-3)^2=27\end{array} \right.\)
<=> \(\left[ \begin{array}{l}m=0\\m-3=\sqrt{27}\\m-3=-\sqrt{27}\end{array} \right.\)
<=> \(\left[ \begin{array}{l}m=0\\m = 3\sqrt{3}+3\\m = -3\sqrt{3}+3\end{array} \right.\) ( Thỏa mãn )