Trang chủ » Hỏi đáp » Môn Toán p=(1 + 1/x) : (1/x – 1/x-x) + 5/x 13/08/2024 p=(1 + 1/x) : (1/x – 1/x-x) + 5/x
Giải đáp: p=(1+1/x):(1/x-1/x-x)+5/x (Đk: x$\neq$0) =(x/x+1/x)/(0-x)+5/x =((x+1)/(x))/(-x)+5/x =(-(x+1))/(x^2)+5/x =(-x-1)/(x^2)+(5*x)/(x*x) =(-x-1)/(x^2)+(5x)/(x^2) =(-x-1+5x)/(x^2) =(4x-1)/(x^2) Vậy p=(4x-1)/(x^2) Trả lời
P = (1 + 1/x) : (1/x – 1/x – x) + 5/x (ĐK : x \ne 0) P = (x/x + 1/x ) : (1/x – 1/x – x) + 5/x P = (x+1)/x : (0-x) + 5/x P = (x+1)/x : (-x) + 5/x P = [-(x+1)]/(x^2) + 5/x P = (-x-1)/(x^2) + (5x)/(x^2) P = (-x-1+5x)/(x^2) P = (4x-1)/(x^2) Trả lời
2 bình luận về “p=(1 + 1/x) : (1/x – 1/x-x) + 5/x”