Trang chủ » Hỏi đáp » Môn Toán a)A=(2x+1/2x-1-2x-1/2x+1) : 4x/10-5 b)B=(1/x^2+x-2-x/x+1) :(1/x+x-2) 28/12/2024 a)A=(2x+1/2x-1-2x-1/2x+1) : 4x/10-5 b)B=(1/x^2+x-2-x/x+1) :(1/x+x-2)
Giải đáp:$\begin{array}{l}a)A = \dfrac{{10}}{{2x + 1}}\\b)B = \dfrac{1}{{x + 1}}\end{array}$ Lời giải và giải thích chi tiết: $\begin{array}{l}Dkxd:x \ne \dfrac{1}{2};x \ne – \dfrac{1}{2};x \ne 0\\A = \left( {\dfrac{{2x + 1}}{{2x – 1}} – \dfrac{{2x – 1}}{{2x + 1}}} \right):\dfrac{{4x}}{{10x – 5}}\\ = \dfrac{{{{\left( {2x + 1} \right)}^2} – {{\left( {2x – 1} \right)}^2}}}{{\left( {2x – 1} \right)\left( {2x + 1} \right)}}.\dfrac{{5.\left( {2x – 1} \right)}}{{4x}}\\ = \dfrac{{4{x^2} + 4x + 1 – 4{x^2} + 4x – 1}}{{2x + 1}}.\dfrac{5}{{4x}}\\ = \dfrac{{8x}}{{2x + 1}}.\dfrac{5}{{4x}}\\ = \dfrac{{10}}{{2x + 1}}\\b)Dkxd:x \ne 0;x \ne – 1\\B = \left( {\dfrac{1}{{{x^2} + x}} – \dfrac{{2 – x}}{{x + 1}}} \right):\left( {\dfrac{1}{x} + x – 2} \right)\\ = \left( {\dfrac{1}{{x\left( {x + 1} \right)}} – \dfrac{{2 – x}}{{x + 1}}} \right):\dfrac{{1 + x\left( {x – 2} \right)}}{x}\\ = \dfrac{{1 – x.\left( {2 – x} \right)}}{{x\left( {x + 1} \right)}}.\dfrac{x}{{1 + {x^2} – 2x}}\\ = \dfrac{{1 – 2x + {x^2}}}{{x + 1}}.\dfrac{1}{{{x^2} – 2x + 1}}\\ = \dfrac{1}{{x + 1}}\end{array}$ Trả lời
a)A = \dfrac{{10}}{{2x + 1}}\\
b)B = \dfrac{1}{{x + 1}}
\end{array}$
Dkxd:x \ne \dfrac{1}{2};x \ne – \dfrac{1}{2};x \ne 0\\
A = \left( {\dfrac{{2x + 1}}{{2x – 1}} – \dfrac{{2x – 1}}{{2x + 1}}} \right):\dfrac{{4x}}{{10x – 5}}\\
= \dfrac{{{{\left( {2x + 1} \right)}^2} – {{\left( {2x – 1} \right)}^2}}}{{\left( {2x – 1} \right)\left( {2x + 1} \right)}}.\dfrac{{5.\left( {2x – 1} \right)}}{{4x}}\\
= \dfrac{{4{x^2} + 4x + 1 – 4{x^2} + 4x – 1}}{{2x + 1}}.\dfrac{5}{{4x}}\\
= \dfrac{{8x}}{{2x + 1}}.\dfrac{5}{{4x}}\\
= \dfrac{{10}}{{2x + 1}}\\
b)Dkxd:x \ne 0;x \ne – 1\\
B = \left( {\dfrac{1}{{{x^2} + x}} – \dfrac{{2 – x}}{{x + 1}}} \right):\left( {\dfrac{1}{x} + x – 2} \right)\\
= \left( {\dfrac{1}{{x\left( {x + 1} \right)}} – \dfrac{{2 – x}}{{x + 1}}} \right):\dfrac{{1 + x\left( {x – 2} \right)}}{x}\\
= \dfrac{{1 – x.\left( {2 – x} \right)}}{{x\left( {x + 1} \right)}}.\dfrac{x}{{1 + {x^2} – 2x}}\\
= \dfrac{{1 – 2x + {x^2}}}{{x + 1}}.\dfrac{1}{{{x^2} – 2x + 1}}\\
= \dfrac{1}{{x + 1}}
\end{array}$