tìm các số `x; y; z` nguyên dương thỏa mãn `2020x^3 + 2023y^3 – 4043z^3 = 0` và `x + y+ z` là số nguyên tố

tìm các số `x; y; z` nguyên dương thỏa mãn `2020x^3 + 2023y^3 – 4043z^3 = 0` và `x + y+ z` là số nguyên tố

1 bình luận về “tìm các số `x; y; z` nguyên dương thỏa mãn `2020x^3 + 2023y^3 – 4043z^3 = 0` và `x + y+ z` là số nguyên tố”

  1. Ta có bổ đề với aZ thì a3a(mod3)
    Thật vậy: a3a=a(a1)(a+1)3(Tích 3 số nguyên liên tiếp.)
    Do đó bổ đề được chứng minh.
    Áp dụng ta được: x3x(mod3),y3y(mod3),z3z(mod3)
    Ta có:
    2020x31.xx(mod3)
    2023y31.yy(mod3)
    4043z31.zz(mod3)
    0x+y+z(mod3)3|x+y+z
    x+y+z nguyên tố x+y+z=3
    Do x,y,zN nên x,y,z1x+y+z3
    Dấu “=” có khi: x=y=z=1(Thỏa mãn.)
              
     

    Trả lời

Viết một bình luận

Câu hỏi mới