Giải pt `[x+(2(3-x)]/(5)]/[12] = 1 + [1- ((9-2x))/12]/[5]`

Giải pt
`[x+(2(3-x)]/(5)]/[12] = 1 + [1- ((9-2x))/12]/[5]`

2 bình luận về “Giải pt `[x+(2(3-x)]/(5)]/[12] = 1 + [1- ((9-2x))/12]/[5]`”

  1. $\dfrac{2+\dfrac{2(3-x)}{5}}{12}=1+\dfrac{1-\dfrac{9-2x}{12}}{5}$
    <=> $\dfrac{\dfrac{5x+6-2x}{5}}{12}=1+\dfrac{\dfrac{12-9+2x}{12}}{5}$
    <=> $\dfrac{\dfrac{3x+6}{5}}{12}=1+\dfrac{\dfrac{3+2x}{12}}{5}$
    <=> $\dfrac{3x+6}{60}=1+\dfrac{3+2x}{60}$
    <=> $\dfrac{3x+6}{60}=\dfrac{60}{60}+\dfrac{3+2x}{60}$
    <=>3x+6=60+3+2x
    <=>3x-2x=63-6
    <=>x=57
    Vậy x=57

    Trả lời
  2. Giải đáp:
     \frac{x+\frac{2.(3-x)}{5}}{12}=1+\frac{1-\frac{9-2x}{12}}{5}
    <=>(x+\frac{6-2x}{5}):12=1+(1-\frac{9-2x}{12}):5
    <=>(\frac{5x}{5}+\frac{6-2x}{5}).\frac{1}{12}=1+(\frac{12}{12}-\frac{9-2x}{12}). 1/5
    <=>(\frac{5x+6-2x}{5}).\frac{1}{12}=1+(\frac{12-9+2x}{12}).\frac{1}{5}
    <=>\frac{3x+6}{5}.\frac{1}{12}=1+\frac{2x+3}{12}.\frac{1}{5}
    <=>\frac{3x+6}{60}=60/60+\frac{2x+3}{60}
    <=>3x+6=60+2x+3
    <=>3x-2x=63-6
    <=>x=57
    Vậy S={57}

    Trả lời

Viết một bình luận

Câu hỏi mới