Cho `4x^2 + 2y^2 + 2z^2 – 4xy – 4xz + 2yz – 6y – 10z + 34 = 0`. Tính giá trị của biểu thức `M = (x – 4)^(22) + (y – 4)^6 + (

Cho `4x^2 + 2y^2 + 2z^2 – 4xy – 4xz + 2yz – 6y – 10z + 34 = 0`. Tính giá trị của biểu thức `M = (x – 4)^(22) + (y – 4)^6 + (z – 4)^(2013)`

1 bình luận về “Cho `4x^2 + 2y^2 + 2z^2 – 4xy – 4xz + 2yz – 6y – 10z + 34 = 0`. Tính giá trị của biểu thức `M = (x – 4)^(22) + (y – 4)^6 + (”

  1. Giải đáp:
     
    Lời giải và giải thích chi tiết:
    HD vắn tẳt, cậu tự chi tiết
    $4x² + 2y² + 2z² – 4xy – 4xz + 2yz – 6y – 10z + 34 = 0$
    $ ⇔ (4x² + y² + z² – 4xy – 4xz + 2yz) + (y² – 6y + 9) + (z³ – 10z + 25) = 0$
    $ ⇔ (2x – y – z)² + (y – 3)² + (z – 5)² = 0$
    $ ⇔ 2x – y – z = y – 3 = z – 5 = 0$
    $ ⇔ x = 4; y = 3; z = 5$
    Thay vào $ M = 2$

     

    Trả lời

Viết một bình luận

Câu hỏi mới