giải hpt:
$\left \{ {{(a+b)^2-2ab=9} \atop {a+b=3+ab}} \right.$
-
Giải đáp: $\left(a,b\right)\in\{\left(\dfrac{-1+\sqrt{17}}2, \dfrac{-1-\sqrt{17}}2\right), \left(\dfrac{-1-\sqrt{17}}2, \dfrac{-1+\sqrt{17}}2\right), \left(3,0\right), \left(0,3\right)\}$Lời giải và giải thích chi tiết:Ta có:$\begin{cases}\left(a+b\right)^2-2ab=9\\a+b=3+ab\end{cases}$$\to \begin{cases}\left(a+b\right)^2-2\left(\left(a+b\right)-3\right)=9\\ab=\left(a+b\right)-3\end{cases}$$\to \begin{cases}\left(a+b\right)^2-2\left(a+b\right)+6=9\\ab=\left(a+b\right)-3\end{cases}$$\to \begin{cases}\left(a+b\right)^2-2\left(a+b\right)+1=4\\ab=\left(a+b\right)-3\end{cases}$$\to \begin{cases}\left(a+b-1\right)^2=4\\ab=\left(a+b\right)-3\end{cases}$$\to \begin{cases}a+b-1=2\\ab=\left(a+b\right)-3\end{cases}$ hoặc $\begin{cases}a+b-1=-2\\ab=\left(a+b\right)-3\end{cases}$$\to \begin{cases}a+b=3\\ab=0\end{cases}$ hoặc $\begin{cases}a+b=-1\\ab=-4\end{cases}$Trường hợp $\begin{cases}a+b=3\\ab=0\end{cases}$Vì $ab=0\to a=0$ hoặc $b=0$$\to \left(a,b\right)\in\{\left(0,3\right), \left(3,0\right)\}$Trường hợp $\begin{cases}a+b=-1\\ab=-4\end{cases}$$\to \begin{cases}b=-a-1\\ab=-4\end{cases}$$\to a\left(-a-1\right)=-4$$\to -a^2-a=-4$$\to a^2+a-4=0$$\to a=\dfrac{-1\pm\sqrt{17}}2$$\to \left(a,b\right)\in\{\left(\dfrac{-1+\sqrt{17}}2, \dfrac{-1-\sqrt{17}}2\right), \left(\dfrac{-1-\sqrt{17}}2, \dfrac{-1+\sqrt{17}}2\right)\}$$\to \left(a,b\right)\in\{\left(\dfrac{-1+\sqrt{17}}2, \dfrac{-1-\sqrt{17}}2\right), \left(\dfrac{-1-\sqrt{17}}2, \dfrac{-1+\sqrt{17}}2\right), \left(3,0\right), \left(0,3\right)\}$