Trang chủ » Hỏi đáp » Môn Toán rút gọn `E=((x^2 -x+2)/(x^2 -x-2)-x/(x^2 -2x)): (1-x)/(2-x)` 17/05/2023 rút gọn `E=((x^2 -x+2)/(x^2 -x-2)-x/(x^2 -2x)): (1-x)/(2-x)`
Giải đáp + Lời giải và giải thích chi tiết: E = ([x^2 – x + 2]/[x^2 – x – 2] – x/[x^2 – 2x]) : (1 – x)/(2 – x) = ([x^2 – x + 2]/[(x^2 + x) – (2x + 2)] – x/[x.(x – 2)]) : (1 – x)/(2 – x) = ([x^2 – x + 2]/[x.(x + 1) – 2.(x + 1)] – x/[x.(x – 2)]) : (1 – x)/(2 – x) = ([x^2 – x + 2]/[(x + 1).(x – 2)] – x/[x.(x – 2)]) : (1 – x)/(2 – x) = [x.(x^2 – x+ 2) – x.(x + 1)]/[x.(x + 1).(x – 2)] : (1 – x)/(2 – x) = [x^3 – x^2 + 2x – x^2 – x]/[x.(x + 1).(x – 2)] : (1 – x)/(2 – x) = [x^3 – 2x^2 + x]/[x.(x + 1).(x – 2)] : (1 – x)/(2 – x) = [x.(x^2 – 2x + 1)]/[x.(x + 1).(x – 2)] : (1 – x)/(2 – x) = [x.(x – 1)^2]/[x.(x + 1).(x – 2)] : (1 – x)/(2 – x) = [(x – 1)^2]/[(x + 1).(x – 2)] : [-(x – 1)]/[-(x – 2)] = [(x – 1)^2]/[(x + 1).(x – 2)] . (x – 2)/(x- 1) = [x – 1]/[x + 1] #Pô Trả lời
1 bình luận về “rút gọn `E=((x^2 -x+2)/(x^2 -x-2)-x/(x^2 -2x)): (1-x)/(2-x)`”